Studies of 'amorphous ice' reveal hidden order in glass

A new study challenges the notion that the atomic structure of glass is indistinguishable from that of a liquid -- at least for a certain kind of glass called "amorphous ice" that forms when water is cooled to very low temperatures.

In the study, researchers at Princeton University and the City University of New York used computer simulations to show that the water molecules in amorphous ice are arranged in a previously undetected order, which the original liquid did not contain. The finding, published Sept. 29 in the journal Physics Review Letters, may help explain water's curious, life-giving properties. It also challenges the very definition of what it means to be a glass.

Glasses are typically made by cooling a liquid rapidly, and, according to current understanding, a glass inherits the order that was present in the original liquid. In the case of amorphous ice, however, as the liquid water cools, a new and orderly arrangement of molecules emerges.

"According to our results, these types of glass are not simply frozen liquids -- this picture doesn't hold anymore," said Fausto Martelli, an associate research scholar in the Department of Chemistry at Princeton. "We are essentially saying that a notion that scientists have believed for many years is partially wrong."

Click here to read full article

Share

Please log in to post comments