In step toward controlling chemistry, physicists create a new molecule, atom by atom

UCLA physicists have pioneered a method for creating a unique new molecule that could eventually have applications in medicine, food science and other fields. Their research, which also shows how chemical reactions can be studied on a microscopic scale using tools of physics, is reported in the journal Science.

For the past 200 years, scientists have developed rules to describe chemical reactions that they've observed, including reactions in food, vitamins, medications and living organisms. One of the most ubiquitous is the "octet rule," which states that each atom in a molecule that is produced by a chemical reaction will have eight outer orbiting electrons. (Scientists have found exceptions to the rule, but those exceptions are rare.)

But the molecule created by UCLA professor Eric Hudson and colleagues violates that rule. Barium-oxygen-calcium, or BaOCa+, is the first molecule ever observed by scientists that is composed of an oxygen atom bonded to two different metal atoms.

Normally, one metal atom (either barium or calcium) can react with an oxygen atom to produce a stable molecule. However, when the UCLA scientists added a second metal atom to the mix, a new molecule, BaOCa+, which no longer satisfied the octet rule, had been formed.

Other molecules that violate the octet rule have been observed before, but the UCLA study is among the first to observe such a molecule using tools from physics -- namely lasers, ion traps and ultra-cold atom traps.

Click here to read full article


Please log in to post comments